Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Analytica Chimica Acta ; : 341378, 2023.
Artigo em Inglês | ScienceDirect | ID: covidwho-20240124

RESUMO

The lack of enough diagnostic capacity to detect severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) has been one of the major challenges in the control the 2019 COVID pandemic;this led to significant delay in prompt treatment of COVID-19 patients or accurately estimate disease situation. Current methods for the diagnosis of SARS-COV-2 infection on clinical specimens (e.g. nasal swabs) include polymerase chain reaction (PCR) based methods, such as real-time reverse transcription (rRT) PCR, real-time reverse transcription loop-mediated isothermal amplification (rRT-LAMP), and immunoassay based methods, such as rapid antigen test (RAT). These conventional PCR methods excel in sensitivity and specificity but require a laboratory setting and typically take up to six hours to obtain the results whereas RAT has a low sensitivity (typically at least 3000 TCID50/ml) although with the results with 15 mins. We have developed a robust micro-electro-mechanical system (MEMS) based impedance biosensor fit for rapid and accurate detection of SARS-COV-2 of clinical samples in the field with minimal training. The biosensor consisted of three regions that enabled concentrating, trapping, and sensing the virus present in low quantities with high selectivity and sensitivity in 40 minutes using an electrode coated with a specific SARS-COV-2 antibody cross-linker mixture. Changes in the impedance value due to the binding of the SARS-COV-2 antigen to the antibody will indicate positive or negative result. The testing results showed that the biosensor's limit of detection (LoD) for detection of inactivated SARS-COV-2 antigen in phosphate buffer saline (PBS) was as low as 50 TCID50/ml. The biosensor specificity was confirmed using the influenza virus while the selectivity was confirmed using influenza polyclonal sera. Overall, the results showed that the biosensor is able to detect SARS-COV-2 in clinical samples (swabs) in 40 min with a sensitivity of 26 TCID50/ml.

2.
36th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2023 ; 2023-January:433-436, 2023.
Artigo em Inglês | Scopus | ID: covidwho-2273127

RESUMO

We have designed, fabricated, and tested a MEMS-based impedance biosensor for accurate and rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) using of clinical samples. The device consists of focusing region that concentrate low quantities of the virus present in the samples to a detectable threshold, trap region hat maximize the captured virus, and detection region to detect the virus with high selectivity and sensitivity, using an array of interdigitated electrodes (IDE) coated with a specific antibody. Changes in the impedance value due to the binding of the SARS-COV-2 antigen to the antibody will indicate positive or negative result. The device was able to detect inactivated SARS-COV-2 antigen present in phosphate buffer saline (PBS) with a concentration as low as 50 TCID50/ml in 30 minutes. In addition, the biosensor was able to detect SARS-COV-2 in clinical samples (swabs) with a sensitivity of 84 TCID50/ml, also in 30 minutes. © 2023 IEEE.

3.
Micromachines (Basel) ; 14(2)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: covidwho-2270732

RESUMO

Micro-devices that use electric fields to trap, analyze and inactivate micro-organisms vary in concept, design and application. The application of electric fields to manipulate and inactivate bacteria and single-celled organisms has been described extensively in the literature. By contrast, the effect of such fields on viruses is not well understood. This review explores the possibility of using existing methods for manipulating and inactivating larger viruses and bacteria, for smaller viruses, such as SARS-CoV-2. It also provides an overview of the theoretical background. The findings may be used to implement new ideas and frame experimental parameters that optimize the manipulation, sampling and inactivation of SARS-CoV-2 electrically.

4.
Eksperimental'naya i Klinicheskaya Farmakologiya ; 85(10):14-25, 2022.
Artigo em Russo | EMBASE | ID: covidwho-2156122

RESUMO

Erythrocytes of 40 patients (11 men and 29 women, average age 52.2 +/- 13.2 years), COVID-19 convalescents (within 2 - 4 months after the disease), were studied by dielectrophoresis using an electro-optical cell detection system in a nonuniform alternating electric field. Cytoflavin at a concentration of 1:30 (v:v) after incubation with erythrocytes (1,6 - 1,8 x 108/ml) for 10 minutes caused an increase by 24 - 63% on average in the share of discocytes, amplitude of deformation, speed of cell movement towards electrodes, magnitude of the dipole moment, capacity of the erythrocyte membranes, and in the polarizability at a frequency of 106 Hz and relative polarizability (p = 0.05 - 0.0001). On the contrary, a decrease by 27 - 49% on average is observed in the composite indicators of viscosity, cell rigidity, electrical conductivity, aggregation index, degree of hemolysis at different frequencies of the electric field (p = 0.05 - 0.002). A shift of the crossover frequency of erythrocytes (from the position of the frequency regions of negative and positive dielectrophoresis) to the low-frequency range is revealed (p < 0.0001). The analysis of data using the Volcano-plot method (paired and unpaired statistics) showed that the degree of erythrocyte deformation at a frequency of 0.5 . 106 Hz, relative polarizability, the position of the crossover frequency, membrane capacity and polarizability of cells at different frequencies of the electric field appeared to be the most sensitive to the action of cytoflavin. Thus, the action of cytoflavin triggers the processes optimizig the rheological properties of erythrocytes of patients underwent COVID-19 which is rather important for adequate micro- and macrocirculation of blood and allows expanding indications for the use of the drug in patients of this category. Copyright © 2022 Izdatel'stvo Meditsina. All rights reserved.

5.
Biosensors (Basel) ; 12(11)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: covidwho-2109936

RESUMO

Quick label-free virus screening and highly sensitive analytical tools/techniques are becoming extremely important in a pandemic. In this study, we developed a biosensing device based on the silicon nanoribbon multichannel and dielectrophoretic controlled sensors functionalized with SARS-CoV-2 spike antibodies for the use as a platform for the detection and studding of properties of viruses and their protein components. Replicatively defective viral particles based on vesicular stomatitis viruses and HIV-1 were used as carrier molecules to deliver the target SARS-CoV-2 spike S-proteins to sensory elements. It was shown that fully CMOS-compatible nanoribbon sensors have the subattomolar sensitivity and dynamic range of 4 orders. Specific interaction between S-proteins and antibodies leads to the accumulation of the negative charge on the sensor surface. Nonspecific interactions of the viral particles lead to the positive charge accumulation. It was shown that dielectrophoretic controlled sensors allow to estimate the effective charge of the single virus at the sensor surface and separate it from the charge associated with the binding of target proteins with the sensor surface.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanotubos de Carbono , Humanos , SARS-CoV-2 , Técnicas Biossensoriais/métodos , Pandemias , Anticorpos Antivirais
6.
Biosens Bioelectron ; 213: 114476, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1944329

RESUMO

Coronavirus disease 2019 (COVID-19) has caused significant global morbidity and mortality. The serology test that detects antibodies against the disease causative agent, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has often neglected value in supporting immunization policies and therapeutic decision-making. The ELISA-based antibody test is time-consuming and bulky. This work described a gold micro-interdigitated electrodes (IDE) biosensor for COVID antibody detection based on Electrochemical Impedance Spectroscopy (EIS) responses. The IDE architecture allows easy surface modification with the viral structure protein, Spike (S) protein, in the gap of the electrode digits to selectively capture anti-S antibodies in buffer solutions or human sera. Two strategies were employed to resolve the low sensitivity issue of non-faradic impedimetric sensors and the sensor fouling phenomenon when using the serum. One uses secondary antibody-gold nanoparticle (AuNP) conjugates to further distinguish anti-S antibodies from the non-specific binding and obtain a more significant impedance change. The second strategy consists of increasing the concentration of target antibodies in the gap of IDEs by inducing an AC electrokinetic effect such as dielectrophoresis (DEP). AuNP and DEP methods reached a limit of detection of 200 ng/mL and 2 µg/mL, respectively using purified antibodies in buffer, while the DEP method achieved a faster testing time of only 30 min. Both strategies could qualitatively distinguish COVID-19 antibody-positive and -negative sera. Our work, especially the impedimetric detection of COVID-19 antibodies under the assistance of the DEP force presents a promising path toward rapid, point-of-care solutions for COVID-19 serology tests.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanopartículas Metálicas , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , Eletrodos , Ouro/química , Humanos , Nanopartículas Metálicas/química , SARS-CoV-2
7.
Journal of Hypertension ; 40:e148, 2022.
Artigo em Inglês | EMBASE | ID: covidwho-1937701

RESUMO

Objective: The purpose is to identify the peculiarities of the parameters of red blood cells (RBC) and hemostasis in patients with strokes associated with coronavirus infection. Design and method: A total of 124 patients (48.5 + 1.9 years) with impairments of cerebral circulation due to COVID-19 (confirmed by positive PCR test) had been examined. Among them, 74 patients had ischemic stroke, 25- transient ischaemic attack, 17- intracerebral hemorrhage, 8- subarachnoid hemorrhage. The parameters of hemostasis were measured by standard methods, electrical, viscoelastic parameters of RBC - by dielectrophoresis. Results: 71 patients (the 1st group) showed signs of intravascular coagulation and thrombosis: accelerated platelet-leukocyte aggregation, increased levels of coagulation products, reduced fibrinolysis activity (p = 0.001-0.04). The levels of D-dimer, fibrinogen, ESR, platelet count were higher in this group compared to the second one (p < 0.01). A moderate increase of RBC summarized rigidity, viscosity was noted. The level of RBC hemolysis was associated with platelet count (r = 0.735,p = 0.03), D-dimer (r = 0.482, p < 0.05), fibrinogen level (r = 0.374, p = 0.04). In 2nd group (53 persons), the markers of thrombosis had moderate deviations. Sharply reduced RBC deformability with increased summarized rigidity, viscosity was dominant coupled with the background of high electrical conductivity of cell membranes compared to the indicators in the 1st group (p < 0.01). There was a decrease of membrane capacity, surface charge, cell dipole moment, polarizability than those in the 1st group (p = 0.0001-0.05). A sharp decrease of RBC deformability creates obstacles to overcoming small-diameter capillaries, leading to violations of microcirculatory blood flow. RBC deformability was associated with levels of ferritin (r = 0.451, p = 0.02), HbA1c (r = 0.480, p = 0.03), uric acid (r = -0.371, p < 0.05), LDL cholesterol (r = 0.461, p = 0.02). Incubation of blood samples in vitro for 10 min with riboflavin, nicotinamide, inosine, which ensures RBC energy metabolism, restored the reduced RBC deformability (p < 0.01), altered cell morphology (p = 0.04), decreased RBC aggregation (p < 0.001). Conclusions: The revealed features of parameters of RBC hemostasis in stroke patients with coronavirus infection are associated with two independent pathogenetic mechanisms: thrombotic and hemorheologic. The thrombotic variant is due to procoagulant state and an activity of inflammation. The hemorheologic variant is caused by decrease of RBC energy metabolism, activity of enzymes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA